Step of Proof: all_quot_elim
12,41
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
all
quot
elim
:
1.
T
: Type
2.
E
:
T
T
3. EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
4.
F
: (
x
,
y
:
T
//(
E
(
x
,
y
)))
5.
w
:(
x
,
y
:
T
//(
E
(
x
,
y
))). SqStable(
F
(
w
))
6.
z
:(
x
,
y
:
T
//(
E
(
x
,
y
))).
F
(
z
)
7.
z
:
T
F
(
z
)
latex
by ((BackThruHyp 6)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
x
,
y
.
t
(
x
;
y
)
,
t
T
,
x
(
s1
,
s2
)
,
P
Q
,
x
:
A
.
B
(
x
)
,
S
T
Lemmas
quotient
qinc
origin